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Abstract. Cloud storage system such as Amazon’s Dynamo and
Google’s GFS poses new challenges to the community to support effi-
cient query processing for various applications. In this paper we propose
RT-HCN, a distributed indexing scheme for multi-dimensional query
processing in data centers, the infrastructure to build cloud systems.
RT-HCN is a two-layer indexing scheme, which integrates HCN-based
routing protocol and the R-Tree based indexing technology, and is por-
tionably distributed on every server. Based on the characteristics of HCN,
we design a special index publishing rule and query processing algorithms
to guarantee efficient data management for the whole network. We prove
theoretically that RT-HCN is both query-efficient and space-efficient, by
which each server will only maintain a tolerable number of indices while
a large number of users can concurrently process queries with low routing
cost. We compare our design with RT-CAN, a similar design in tradi-
tional P2P network. Experiments validate the efficiency of our proposed
scheme and depict its potential implementation in data centers.
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1 Introduction

Cloud storage systems have been continuously drawing attentions from both
academia and industry in recent years. From classical systems for general data
services, such as Google’s GFS [1], Amazon’s Dynamo [2], Facebook’s Cassan-
dra [3], to newly designed systems with specialities, such as Haystack [4], Mega-
store [5], Spanner [6], various distributed storage systems were constructed to
satisfy the increasing demand of online data-intensive applications that require
massive scalability, efficient manageability, reliable availability, and low latency
in the storage layer. Correspondingly, many works are proposed for designing
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new indexing scheme and data management system to support large-scale data
analytical jobs and high concurrent OLTP queries [7–10].

In a cloud DB system, datasets are partitioned among distributed servers,
while users may hop among multiple servers to process their query requests. To
provide an efficient indexing scheme, a common feature of the above literature is
that they split indices into two categories: global index and local index, and then
portioned their global indices to each server according to an overlay network ar-
chitecture. Following the direction of indices, users route queries among servers
based on the underlying routing protocols of the network connecting servers to-
gether. However, all these designs are constructed on P2P networks [10–12], while
nowadays cloud systems are usually built on an infrastructure called data cen-
ter, which consists of large number of servers interconnected by a specific Data
Center Network (DCN) [13–20]. For instance, Cisco applies Fat-Tree topology
as its DCN architecture for provably efficient communication [13]. Different from
P2P network, DCN is more structured with low equipment cost, high network
capacity, and support of incremental expansion. It is natural that such infras-
tructures bring new challenges for researchers to design efficient indexing scheme
to support query processing for various applications.

In this paper, we propose our RT-HCN, a distributed indexing scheme for
multi-dimensional query processing in Hierarchical Irregular Compound Net-
works (HCN) [21, 22], which is the latest designed DCN structure using dual-
port servers. HCN has many attractive features including low diameter, high
bisection width, large number of node-disjoint paths for pairwise traffic, and
supports low overhead and robust routing mechanisms. Additionally, in many
online data-intensive services users tend to query data with more than one key,
e.g., in Youtube video system users may want to find videos via both video ids
and size ranges. Therefore, designing an indexing scheme for multi-dimensional
query processing in HCN is useful and meaningful for real-world cloud appli-
cations, which has both theoretical and practical significance in this area. To
search the data efficiently, the R-tree [23] based multi-dimensional index is used
in our system. RT-HCN integrates HCN-based routing protocol and the R-Tree
based indexing technology.

Similar to previous works, RT-HCN is a two-layer indexing scheme with a
global index layer and a local index layer. Since datasets are distributed among
different servers, we can use an R-Tree like indexing structure to index locally
stored data for each server. Next, RT-HCN portionably distributes these local
indices across servers as their global indices. To avoid single master server bot-
tleneck, each server only maintains partial global index for its potential index
range. Based on the characteristics of HCN, we design an index publishing rule
to guarantee an “onto” mapping from global index to local stored data. We
also propose the corresponding query processing algorithms to achieve query
efficiency and load balancing for each node in the network. Finally, we prove
theoretically that RT-HCN is both query-efficient and space-efficient, by which
servers will not maintain redundant indices while a large number of users can
concurrently process queries with low routing cost. We compare our design with
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RT-CAN [7], a similar design for traditional P2P network. Experiments validate
the efficiency of our proposed scheme and depict its potential implementation in
data centers.

Our contribution of this paper is threefold: (1) to the best of our knowledge,
we are the first to propose a distributed multi-dimensional indexing scheme for a
specific DCN structure to improve query efficiency and system QoS; (2) noticing
and taking advantage of the topology of HCN, we present a specialized mapping
technique to improve global index allocation in the network, resulting query-
efficiency and load-balancing for the cloud system; and (3) we theoretically prove
the efficiency of RT-CAN, and compare our model numerically with RT-CAN [7],
an indexing scheme for P2P network. Simulation results show that our scheme
costs less index space for each node while provides faster query processing speed
with higher bandwidth.

The rest of this paper is organized as follows. Section 2 summarizes the re-
lated work in this research area. Section 3 introduces the overview of our system,
including coding of HCN and meta-servers. In Sec. 4 we illustrate the two-layer
index construction with global index publishing rules. In Sec. 5 we depict the
query processing algorithms with corresponding performance analysis theoreti-
cally. Section 6 discusses the maintenance and improvement of RT-HCN. Sec-
tion 7 compares our design with the latest work RT-CAN in [7] and proves the
efficiency of our construction. Finally, Section 8 provides a conclusion.

2 Related Works

Nowadays, there are lots distributed storage systems which assist to manage
big data for cloud applications. Among them, we have excellent commercial
implementations like key-value based system Amazon’s Dynamo [2], Google’s
Google File System [1] (GFS), and BigTable [24], which aim at dealing with
large scales of data. Meanwhile, some open source systems such as HDFS, HBase
and HyperTable also provided a good platform for research use. Cassandra [3]
is one non-rational database that combines features of BigTable and Dynamo.
Some other systems such as Ceph [25], are designed to provide high performance
in objects retrieval.

We want to build a second level overview index and our work follows the
framework proposed in [8]. It offers an idea to build a two level index in cloud
system for data retrieval on top of a physical layer. Moreover, an efficient and ex-
tensible framework for index in P2P based cloud system was put forward in [10].
However, more specialized topology has been designed to meet the requirement
of today’s cloud system and that is why we want to apply the two-level index
design to specific data center network and discuss its improvement. As the topol-
ogy of DCN is known, we can guarantee the processing time by calculating out
the physical hops needed for a given query. While in P2P network only logical
hops of the overlay network can be estimated.

Data center network (DCN) is the network infrastructure inside a data center,
which connects a large number of servers via high-speed links and switches.
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Compared to traditional cloud system which is usually based on P2P network,
specially and carefully designed DCN topologies fulfill the requirements with low-
cost, high scalability, low configuration overhead, robustness and energy-saving.
DCN structures can be roughly divided into two categories, one is switch-centric
such as VL2 [14] and Fat-Tree [13]. The other is server-centric like BCube [16],
DCell [15], FiConn [17, 18], MDCube [19] and uFix [20]. They usually have more
advantages than the former designs. HCN [22], the topology chosen in our system
falls into the server centric topology. It is a well-designed network for data center
and offers a high degree of regularity, scalability, and symmetry. Different from
traditional P2P network, we have to be aware of the physical topology when we
are discussing DCN and that is why we need to improve the mapping technique
for distributing global index to fix a given network.

3 System Overview

In this section, we will introduce the topology of HCN and illustrate some basic
features of it. Then, we explain some preliminary definitions for further illustra-
tion of index construction strategy.

3.1 Hierarchical Irregular Compound Network

HCN (Hierarchical irregular Compound Network) is a well-designed network for
data center and offers a high degree of regularity, scalability, and symmetry. A
level-h HCN with n servers in every single unit is denoted as HCN(n, h). HCN
is a recursively defined structure. A high-level HCN(n, h) employs a low level
HCN(n, h − 1) as a unit cluster and connects many such clusters by means of
a complete graph. HCN(n, 0) is the smallest module (basic construction unit)
that consists of n dual-port servers and an n-port miniswitch. For each server,
its first port is used to connect with the miniswitch while the second port is
employed to interconnect with another server in different smallest modules for
constituting larger networks. Figure 1 illustrates an example of HCN with n = 4
and h = 2, which consists of 64 servers. Each server is labeled according to a
coding process, which will be introduced in Sec. 3.2.

It is easy to see that there is always multiple routes between any two servers
in HCN and this is called multi-path routing which provides good features like
high bandwidth, good balancing and error tolerance. This is the main aspect we
want to concern during index construction and also becomes a main reason why
special designed index scheme for specific network is well worth being discussed.

For clarity, we summarize the symbols with their meanings in Table 1. Some
of them will be described in the following sections.

3.2 Meta-Server and Coding Strategy

Given an HCN(4, h), there are 4h+1 servers in total and are coded by n ranging
from 0 to 4h+1 − 1. Thus we use Sn to denote the nth server in the HCN.
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Fig. 1. HCN(4,2) with Coding for Meta-Server

Table 1. Symbol Description

Sym Description Sym Description

n Code for server and meta-server h The highest level of HCN
Sn The server with code n B Data boundary
Mn The meta-server with code n Bn Potential index range for Mn

Rn Representatives for Mn Ri
n The ith representative for Mn

Nn Sn’s node set for publishing. N i
n The ith publishing node for Sn

Since HCN itself is a recursively defined structure, there are also 4h−l different
HCN(4, l)’s (0 ≤ l ≤ h) in the same HCN(4, h). We consider each Sn and
HCN(4, l) (0 ≤ l ≤ h) as a meta-server in our system.

Definition 1. A Meta-server is a single server or an HCN(4, l) (0 ≤ l ≤ h)
considered entirety.

Meta-servers together constitute the overlay network and facilitate global
queries, which is going to be explained in detail later. Meta-servers are also
coded by n and denoted as Mn. The coding strategy of Mn is given by:

Mn =

{
Sn, 0 ≤ n < 4h+1

HCN(4, q − 1) consists of Sr, Sr+1, · · · , Sr+4q−1, n ≥ 4h+1 , (1)

where q and r from the above equation represent the quotient and the reminder
when the given n is divided by 4h+1. From the function, we know that Mn is
equivalent to Sn when n < 4h+1, and when n ≥ 4h+1 Mn represents a specific
HCN(4, l) (0 ≤ l ≤ h). For example, Fig. 1 shows that in an HCN(4, 2), 64
meta-servers consist of only one server are coded with the number ranging from
0 to 63, 16 meta-servers formed by HCN(4, 0) are coded with 64, 68, · · ·, 124
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(shown as red squares), 4 bigger meta-servers formed by HCN(4, 1) are coded
with number 128, 144, 160, 176 (shown as blue squares), while the biggest green
square formed by the whole HCN(4, 2) is coded with 192.

3.3 Representatives in Meta-Server

As is already mentioned, meta-servers form a higher-level overlay network and
assist query processing in the network. However, as meta-servers are merely an
abstract concept, we need to pick up several physical servers to be in charge of
queries that are sent to corresponding meta-server from the overlay network.

Definition 2. Representatives of a given meta-server are several carefully
picked servers that physically deals with queries forwarded to that meta-server.

We now provide our strategy for choosing representatives of a given meta-
server Mn and there are two cases:

1. If n < 4h+1, we chose Sn as the representative of Mn since Mn = Sn.
2. If n ≥ 4h+1, Mn, now, is actually an HCN(4, l) (0 ≤ l ≤ h), and we provide

a special bit manipulation to find out its representatives. First we calculate
the quaternary form of n, denoted as q0q1 · · · qm. Here m > h stands since
n ≥ 4h+1. Secondly, we pick up the first m − h bits as shown in Eqn. (2)
and calculate the decimal number b. Then we replace each of the last b bits
with q∗, where q∗ �= qm−b and will get several newly formed number. Finally
we calculate the decimal form of the last h+1 bits of the new numbers and
servers coded with those numbers are the representatives for this Mn.

m − h bits h + 1 bits︷ ︸︸ ︷
q0q1 · · · qm−h−1

︷ ︸︸ ︷
qm−h · · · qm−bqm−b+1 · · · qm

=b (decimal) replace part

(2)

For example, the grey nodes in Fig. 2 (a), (b) illustrates the representatives
for corresponding meta-server HCN(4, l) when l equals to 0 and 1. It is obvious
that these representatives actually takes the advantages of HCN topology and
offer good connectivity which will facilitate query process.

We denote the representatives of Mn as set Rn and Rn has different number
of entities in different situation. In case 1, Rn = {R1

n} while in case 2, Rn =
{R1

n, R
2
n, R

3
n}. Here Ri

n stands for the server which is the ith representative of
meta-server Mn, and Ri

n is called an lth-level representative if and only if Mn is
a meta-server formed by an HCN(4, l) (0 ≤ l ≤ h).

Now we give some explanation on choosing representatives. It is obvious to
choose Sn as representatives for Mn when n < 4h+1 because they are exactly
the same. So we focus our discussion on case 2 here. According to the topology
of HCN, it is not hard to find that all of the representatives we choose for Mn

(n ≥ 4h+1) are servers that are more closely connected to other HCN(4, l)’s in
the same level. Thus, our strategy cut the cost of queries forwarding and since
there are three representatives for a single Mn, it also offers flexibility to choose
the closet representative or the dullest one. This strategy also fits quite well with
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Fig. 2. The Representatives for Meta-servers in HCN(4,2)

the multi-path routing of HCN. What’s more, the following lemma and theorem
show that our strategy also offers good scalability and balancing property.

Lemma 1. Each meta-server Mn (n ≥ 4h+1) has exactly three representatives.

Proof: There are four different bits in quaternary number and our strategy re-
place the bits with a same bit different with qm−b in Eqn. (2), so the result is
three. The biggest M(h+1)·4h+1 is the only special one that has four representa-
tives since the bit qm−b does not exist in this case. �

Theorem 1. Each server Sn will be the representative for exactly two different
meta-servers.

Proof: Firstly, it is obvious that each server should be chosen as a representative
for Mn where n < 4h+1. Secondly, according to Lemma 1, the representative-
time in the whole system is 2 · 4h+1 in total. Thirdly, no server can be selected
for three times. Since the quaternary form of the coding for a given server is
fixed, there exist only one way for it to be split according to the form given by
Eqn. (2). Combining the above discussion, we can draw a conclusion to our proof
according to the Pigeonhole Principle. �

4 Indexing Construction

In this section, we first introduce the vital component of the higher level overlay
network, which is essential for constructing the global index. Then we introduce
the construction our two-layer index in detail with index publishing rules.
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4.1 Potential Indexing Range

Before we begin our discussion of index construction, we illustrate another es-
sential concept about our meta-servers. In order to construct the global index
for multi-dimensional data in our overlay network, we have assigned each meta-
server a potential indexing range. Thus, for any given queries, we can figure out
which meta-server is responsible for it and then the query is processed by the
representatives of that meta-server.

The multi-dimensional data forms a data boundary denoted as B, which is a
k-dimensional rectangle as the bounding box of the spatial data objects:

B = (B0, B1, B2, · · · , Bk) . (3)

Here k is the number of dimensions and each Bi is a closed bounded interval
[li, ui] describing the extent of the data along dimension i. To better illustrate
our idea, the following discussion focuses on an example situation when k = 2.

Definition 3. Potential indexing range is an abstract attribute assigned to
meta-server and indicates which meta-server (indeed the subordinate represen-
tatives) is (are) responsible for processing a coming query.

Suppose the data is bounded by B = (B0, B1), where B0 is [l0, u0] and B1 is
[l1, u1]. We calculate a quaternary number Qn for each meta-server Mn and use
it to help figure out the potential index range Bn for Mn. Suppose q0q1 · · · qm
is the corresponding quaternary form for n, then Qn is calculated according to
the following two cases:

1. If m ≤ h, we add m − h consecutive 0’s to the front of q0q1 · · · qm and
construct an h+ 1 bit quaternary number Qn = 00 · · ·0q0q1 · · · qm.

2. If m > h, q0q1 · · · qm can be split as the form explained in Eqn. (2). In this
situation, we pick out the last h+ 1 bits and delete the replace part to get
Qn = qm−hqm−h+1 · · · qm−b.

Now, we use the following iteratively defined function to calculate Bn.

Bn = pir(B, Qn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pir(([l0,
l0+u0

2 ], [l1,
l1+u1

2 ]), Q′
n), q0 = 0

pir(([ l0+u0

2 , u0], [l1,
l1+u1

2 ]), Q′
n), q0 = 1

pir(([l0,
l0+u0

2 ], [ l1+u1

2 , u1]), Q
′
n), q0 = 2

pir(([ l0+u0

2 , u0], [
l1+u1

2 , u1]), Q
′
n), q0 = 3

([l0, u0], [l1, u1]) Qn = ∅

, (4)

where Qn is a quaternary number denoted as q0q1 · · · qi and Q′
n is a newly

constructed quaternary number q1q2 · · · qi. For higher dimensional data, the data
range can be seen as a hyper-rectangle and the potential index ranges for different
meta-servers are sequenced according to their coding in a similar way.

For example in Fig. 3 (a), two axes B0 and B1 denote the range of data in two
dimensional space (w.l.o.g., we assume it generates a square area, rather than a
rectangle). Then the potential indexing range for M80 (denoted as red square)
should be ([ l0+u0

2 , l0+3u0

4 ],[l1,
3l1+u1

4 ]); the pir for M144 (denoted as blue square)

is([ l0+u0

2 , u0], [l1,
l1+u1

2 ]), while the pir for M192 is ([l0, u0], [l1, u1]).
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Fig. 3. Illustration of Range Mapping and Index Distribution

4.2 Global Index in Overlay Network

As is discussed above, each data server Sn has built an R-tree index for its local
data to facilitate multi-dimensional search. Then, Sn adaptively selects a set of
index nodes Nn = {N1

n, N
2
n, · · · , Ndn

n } from its local R-tree and publishes each
N i

n to the representatives of a specific meta-server whose potential indexing range
just covers the minimum bounding range of N i

n. We initially choose the last but
one level index nodes from a given R-tree to be published since these nodes are
usually not frequently updated and do not introduce too many false positives
either. The format of the published R-tree nodes is (n,mbr), where n indicates
the origin server for storing the data and mbr is the minimal bounding range of
the published R-tree node. After receiving the published nodes, representatives
buffers the index in memory. In this way, the global index composes of several
R-tree nodes from the local indexes and is distributed over the data center.

Algorithm 1. Index Publishing (For Sn)

1 Nn =getSelectedRTreeNode(Sn)

2 for each N i
n ∈ Nn do

3 Find the least n′ s.t. Bn′ fully covers N i
n.mbr

4 Get the representatives Rn′ for Mn′

5 for each Sk ∈ Rn′ do
6 Sk inserts (n,N i

n.mbr) into its global index set
7 end

8 end

Fig. 3 (b) provides a simple example of a local R-tree. If the node R1 is
selected to be published, it should be published to server S17, S18, S19, which
are representatives of the HCN(4, 0) shown in red. Similarly, if the node R3 is
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selected to be published, it should be published to server S16, S26, S31, which are
representatives of the HCN(4, 1) shown in blue.

The average routing cost for one-to-one traffic in HCN is O(2h+1) [22], and
the cost for information transmission between representatives of the same meta-
server is o(2h+1), thus the cost to publish an index node should be O(2h+1) on
average, and it equals to O(

√
N) when n = 4, where N is the total number

of servers in the given HCN. For more general situation, the cost is given by
N− log2 n and can be reduced as n get larger. We also want to mention here that
the cost shown above is exactly physical hops between servers while previous
works claims that it takes only O(logN) to publish index in P2P network but
they are only discussing hops in the overlay network. Since the physical con-
nection of P2P network is unclear, the physical hops can be hard to exam and
constrain. Another improved feature for index publishing in our system is that
under this design we can make sure that each index node is published to exactly
only three servers in the system. However, the strategy used in [7] publish the
nodes to other servers as long as the range of the index node overlaps with the
potential index range of the given servers. Then, the amount of index nodes
published in the system is hard to control.

5 Query Processing

In this section we show how our global index can be applied to process queries
and reduce the cost of physical hop counts in an HCN.

5.1 Point Query

A query is denoted as Q(value) where value = (v0, v1), indicating a multi-
dimensional data point. Given an indexed R-tree node Nn

i , Nn
i should be

searched to retrieve possible results if and only if Nn
i .mbr covers the query point

(v0, v1). Such node Nn
i , however, can be published to several different represen-

tatives in our system. The following theorem shows that we have to search a set
of servers’ global index to get the full results. Our design splits the processing
of a query into two phases. In the first phase, the query is done by the response
server Sn1 of the meta-server that is responsible for the query and the repre-
sentatives look up the global index, search the buffered R-tree nodes and return
the entries that satisfy the query. In the second phase, based on the received
index entries, the query is forwarded to the corresponding physical server Sn2

and retrieve the results via the local R-tree.

Theorem 2. The published index node that may contain results for a given
value (v0, v1) are in representatives of h + 2 meta-servers. Moreover, exactly
h+ 1 servers need to be searched in total to get the full results.

Proof: Suppose an indexed R-tree node Nn
i contains the search value (v0, v1), it

is certain that the destination for publishing this index node must be the repre-
sentative of some meta-servers whose potential index range covers point (v0, v1),
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other wise it will contradict with our publishing rule. Therefore, we can easily
figure out there are h+ 2 different meta-servers that meet the above condition.
They respectively consist of a single server, an HCN(4, 0), an HCN(4, 1), · · ·, and
the biggest HCN(4, h). Since the meta-server formed by a single server takes it-
self as a representative and is also one of the representatives for the meta-server
formed by HCN(4, l) that meet the above condition for some l, the total number
of servers to search is then h+ 1. It is also good to notice that the h+ 1 servers
are actually representatives of different levels that is from 0th level to hth level,
this will facilitate our explanation for query forwarding. �

Although it seems that h + 1 is a quite big number while the total number
of servers are 4h+1, we provide our strategy for forwarding the query based on
a greedy algorithm and show that the cost of forwarding is really small even
when there are h+ 1 servers to be searched. As we have discussed above, there
are h + 1 representatives to search and they range from level 0 to level h. To
process a query Q(v0, v1), we first forward the query to the nearest hth level
representative Snh

which is responsible for the given query. Snh
searches its

buffered global index and returns matched results to the user. Then, it forwards
the query to the nearest h− 1th level representative Snh−1

, respectively. Until
a 0th level representative has been searched, we can finally get the full results.
The head of the routing message follows the format of {l, value}, where l is the
level for representative and value is the querying point. Alg. 2 describes such
process in detail.

Algorithm 2. Point Query Processing

Input : {l, value}
Output: N (the result set of indexed R-tree nodes)

1 N = ∅

2 for ∀N ∈ S.globalIndex do
3 if N.mbr covers value then
4 Add N into N
5 end

6 end

7 Snext = the nearest l − 1th level representative for value
8 Forward query message {l − 1, value} to Snext

9 return N

We can see from the above algorithm that the shortest query path for a given
query is O(logN) and if we want to maintain the multi-path routing of HCN,
our index publishing scheme does bring out some extra cost for specific queries.
But since the cost of forwarding queries from any l + 1th level representative to
the nearest lth level representative will never exceed the maximum cost of point-
to-point routing in an HCN(4, l) which is O(2l+1), and noticing that under this
design only with a probability of 1

4 will a query pass result in redundant routing,
thus, the average cost of query in our system will only be 5

4 times of the cost
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of point-to-point routing in an HCN(4, h) and then is still constrained by a
logarithmic scale. What’s more, with a similar analysis, it is easy to figure out
that the parameter 5

4 will decrease to n+1
n when considering an HCN(n, h). We

mention again that the cost we were discussing above are all physical connections
rather than hops in the overlay network.

5.2 Range Query

A range query is denoted as Q(range), where range = ([l0, u0], [l1, u1]) is a
multi-dimensional hypercube. If an R-tree node’s boundary Nn

i .mbr overlaps
with range, it should be searched to retrieve the possible query results. Let us
think about an easy case first, if the range is small enough and can be fully
covered by some Bn, where n is smaller than 4h+1, then Q(range) actually goes
in the same way we do for point queries in the last subsection. Inspired by this
special case, we can figure out that range query is an variation of point query,
with only a small modification.

We can first find out the smallest HCN(4, l) that fully covers the queried
range, then just as what we did in point query, we first forward the query to
the nearest hth level representative Snh

, which is responsible for the given range.
Then, Snh

forwards the query to the nearest h− 1th level representative Snh−1
,

respectively, until an lth level representative has been searched. Then, different
from what we did in point query, from the lth level on, the representatives will
forward the query to all the lower level representatives, whose potential index
range overlaps with range, to guarantee the correctness and completeness of
results. Since routing cost in HCN(4, l) where l < h is o(logN), with similar
analysis for point query, it is easy to figure out that the cost for a range query
is still O(logN), and the detail of the range query algorithm is omitted here as
it is similar to Alg. 2.

6 Further Discussion and Optimization

We only used HCN(4, 2) and 2-dimensional data for discussion in the above sec-
tions, this does not mean these two parameters should be fixed. When consider-
ing the implementation of an HCN(n, h), the function to map each meta-server
a different potential index range should be changed since n is different. Notic-
ing that h is a parameter that indicates the scalability of the whole system, it
does not affect much the design of the mapping function because the system
is a recursively designed architecture. In a situation where n �= 4, we can also
build a function similar to Equation (4), the only difference is that we are now
dealing with an n-dimensional number rather than a quaternary number. For
higher dimensional data, we can take advantage of the space-filling curve [27] to
reduce dimension. Taking advantage of these space filling curves, it is possible
to generate one-to-one mappings between spaces of different dimensions, that is,
we can apply our strategy similarly to higher-dimension data.

We also offer an optimization for data distribution. It is sure that the system
will be more balanced if the data with close features are allocated closer. It is
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also good to keep the locality coherence of data for retrieval, especially for multi-
dimensional data. Locality sensitive functions offered by [26] can facilitate data
distribution and offer good performance of query processing. Another significant
improvement can be done is about queries with specific frequency. It is a common
scene in real world that some data are more hot and queried more frequently
than others. In this case, it is sure that some servers which are responsible for
the hot data are more busy and are in the risk of being bottleneck for the system.
A heuristic strategy for this problem is that we may want to assign a dynamic
potential index range for each server and discuss the cost of maintenance and
the improvement of performance.

7 Performance Evaluation and Numerical Experiments

In this section, we evaluate the performance of RT-HCN. We simulate an
HCN(4, 2), generate the multi-dimensional data and randomly allocate them
in different servers. We consider randomly generated data together with data
following Zipf distribution to prove the scalability of RT-HCN. The queries in-
cluding both point queries and range queries are randomly generated from any
server. Since the cost of query processing is proved to takes only N− log2 n physi-
cal hops for any given query, performance of our system discussed in this section
focus mainly on two metrics: Heat of each server and Index nodes in each server,
both of which reflects the high scalability and balance of the system. Table 2 is
the parameters used in our experiments.

Table 2. Parameters Used in Our Experiments

Parameter Default Range Meaning

D 320000 [320000, 1280000] Number of data items in total
h 2 Highest level of HCN
N 64 Total number of servers

First, we estimate the number of published index nodes in different servers in
the network. We compare the results of our publishing strategy with the one used
in RT-CAN to show that we provide a more scalable and balanced publishing
rule. Our evaluation is first carried out with randomly generated data and then
with data that obey centralized distribution. Fig. 4 and Fig. 5 show the data
distribution in the experiments.

We then vary the number of data items distributed to each server and in-
vestigate the changes in number of published index nodes. Fig. 6-8 show the
number of global indices on each server according to RT-HCN and RT-CAN
publishing rules, where number of data item varies from 320, 000 to 1, 280, 000.
From the results we can see that our system maintains less index entries at each
server compared to RT-CAN under uniform data distribution. Similarly, results
in Fig. 9-11 show that when data are not randomly distributed, our design still
provides a better result with tolerate number of indices.
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Fig. 5. Zipf Data Distribution
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Fig. 6. D=320,000
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Fig. 7. D=640,000

 1400

 1600

 1800

 2000

 2200

 0  4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64

N
um

be
r 

of
 G

lo
ba

l I
nd

ex

Server

RT-HCN RT-CAN

Fig. 8. D=320,000
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Fig. 9. D=640,000
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Fig. 10. D=640,000
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Fig. 11. D=1,280,000
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Finally, we estimate the visiting frequency of different servers in the network
(denoted as a heatmap) when a given number of randomly generated queries are
processed. The heatmap is drawn according to the access frequency of each server
and directly reflects the processing condition of servers in the system. When a
multiple-paths routing is applied, the variance of access frequency of the whole
system is reduced, indicating a more balancing performance. Moreover, when
a larger HCN is built, good balancing performance of smaller HCNs reduces
the risk of any server being the bottleneck. Thus, in other words, good results
from heatmap also reflect good scalability of our system design. The results are
shown in Fig. 12 and Fig. 13. We can see that shortest path routing offers a
not bad performance since most servers are almost as busy as each other and
when we apply multiple paths for one-to-one traffic we get a even more balanced
performance since our publishing strategy is not locality based.
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Fig. 12. Heatmap Shortest-Paths
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Fig. 13. Heatmap Multiple-Paths

8 Conclusion

In this paper, we proposed an indexing scheme named RT-HCN for multi-
dimensional query processing in data centers, which are the infrastructures for
building cloud storage systems and are interconnected using a specific data cen-
ter network (DCN). RT-HCN is a two-layer indexing scheme, which integrates
HCN-based routing protocol [22] and the R-Tree based indexing technology, and
is portionably distributed on every server. Based on the characteristics of HCN,
we design a special index publishing rule and query processing algorithms to
guarantee efficient data management for the whole network. We prove theoret-
ically that RT-HCN is both query-efficient and space-efficient, by which each
server will only maintain a constrained number of indices while a large number
of users can concurrently process queries with low routing cost. We compare our
design with RT-CAN [7], a similar design for traditional P2P network. Exper-
iments validate the efficiency of our proposed scheme and depict its potential
implementation in data centers.
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